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ABSTRACT 

 The intent of current research is to identify 

and explore the footprint of magnetohydrodynamic 

stagnation point flow across a convective surface in 

which impermeability of the surface, Dufour 

diffusivity, heat generation/absorption, magnetic 

field intensity, Biot number, non-linear radiative 

heat, among other parameters are accounted. 

Convection and diffusive boundary conditions are 

deemed. The governing flow equations for the flow 

fields are converted into non-dimensional form by 

using appropriate similarity variables. These ODEs 

are solved by fourth order Runge–Kutta and 

Shooting method. The outcomes are bestowed with 

plots and table for the influence of diverse flow 

variables on the flow fields. It was observed that 

temperature depreciates andconcentration 

appreciate with the upsurge in Sorret number, 

whereas a negative impact is perceived with 

Dufour number. A decrement in Nusselt number 

and an enhancement in Sherwood number are 

observed for the intensification of non-linear 

radiative parameter. 

 

Keywords: Stagnation Point, 

Magnetohydrodynamic, Stretching surface, 
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I. MATHEMATICAL ANALYSIS 
 We investigated continuous 2 dimensional 

boundary layer flow of a nanofluid in the presence 

of a Dufour diffusivityalongsideimpermeability of 

the surface via solar radiation, as illustrated in 

Figure1 below. magnetic field of homogeneous 

strength as well as heat generation/ absorptionare 

also taken into consideration. 

 

 
Fig. 1 Coordinate system of physical model 

 

The orientations are such that the sheet is 

stretched along the x-axis and perpendicular to the 

y-axis. The velocity at the sheet surface (wall) is 

kept constant over the distance x, and x is the sheet 

coordinate, and the sheet velocity is zero. The 

transverse magnetic field is exposed to flow normal 

to the fluid flow direction along the positive y. The 

external electrical field is Assumed to be 0, also the 

electrical field induced by charge polarization is 

insignificant. After which the mass transfer 

analysis is carried out, taking into account the 

impacts of Dufour Diffusivity, impermeability, 

chemical reaction, heat generation/absorption as 

well as the other relevant characteristics. The sheet 

surface temperatureTw corresponds to the quiescent 

fluid temperature Tfduring the convective heating 

process. T is the temperature of the surrounding 

fluid. C stands for nanoparticle concentration, Cw 

for nanoparticle concentration at the wall, and C∞ 

for ambient concentration. 

 Based on the conventional boundary layer 

assumptions, these are the governing equations for 

the conservation of Mass, Momentum, 

Temperature, and Nanoparticle Concentration in 

the presence of Dufour Diffusivity and 
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Impermeability of the surface as in Ghasemi et al. 

(2021): 
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where vf denotes kinematic viscosity, σe 

denotes fluid electrical conductivity, B0 denotes a 

uniform magnetic field along the y-axis, u and v 

denote velocity components in the x and y axes 

respectively, 

f

p

C

C

)(

)(




  , stands for the ratio of 

the effective heat capacity of nanoparticles to the 

heat capacity of the base fluid, where qr denotes the 

quantity of radiative heat flux. By the radiative heat 

flux can be calculated using the Rosseland 

approximation for thermal radiation and applied to 

optically thick medium. as well as [Raptis (1998), 

Brewster (1972) and Sparrow and Sparrow (1978)]. 

 The Stefan–Boltzman constant and the 

mean absorption coefficient are represented by σ
*
 

and k
*
, respectively. The nonlinear Rosseland 

approximation is employed for radiative heat flux 

modeling based on earlier works [Mushtaq et al. 

(2014), Ghasemi et al. (2016), Ghasemi et al. 

(2021)]. As a result, the relevant convective heat 

transfer boundary conditions can be written as 
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Together with the following dimensionless 

variables as in Ghasemi et al. (2021) 
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The first term on the right hand side for 

Eq. (2) will be transferred to 

   *3*3 3/16,11 kkTRwhereR
y

T

y
dwd 

















  

by defining the non-dimensional temperature 

profile as fTTT /)(  with 

   11   wTT  and Rd=0 is the scenario 

when there is no thermal radiation impact. The last 

statement can also be simplified to 
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/Pr fv  

By introducing the boundary conditions eq. (6) as 

well as the dimensionless quantities in eq. (7). 

Equation (1) is satisfied automatically, whereas, eq. 

(2), eq. (3) and eq. (4) constitutes these Ordinary 

differential equations:   
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Furthermore, when A= 0, the exact solution of Eq. 

(5) may be determined by using 
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M
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, where T is the 

temperature, C is the concentration of 

nanoparticles, Cf is the fluid's specific heat, and DB 

and DT are the Brownian motion and 

thermophoretic diffusion coefficients, respectively 
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Where  prime represents differentiation with 

respect to the function 

f

e

a

B
M






2

0,   is the 

magnetic parameter, 
a

b
A  is the ratio of the rates 

of free stream velocity to the velocity of the 

stretching sheet. 

Eqs. (8)– (10) are subject to the following 

boundary conditions 
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Some of the parameters involved in Eqs. (8)– (10) 

are defined as follows 
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The Lewis number is Le, the Brownian 

motion parameter is Nb, the thermophoresis 

parameter is Nt, the Biot number is Bi, 

impermeability of the surface k1, Dufour diffusivity 

Nd, and Eckert number is Ec. The Nusselt number, 

Nu, and the Sherwood number, Sh, are the 

quantities of practical interest. As previously 

stated, the x-coordinate does not fit into the 

temperature equation. As a result, we try for the 

most local similarity solutions conceivable. The 

wall heat flux and wall mass flux, denoted by qw 

and qm, are supplied as follows: 
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By introducing the Nusselt number 

)(/  TTkxqNu fwx  and local Sherwood 

number )(/  CCDxqSh wBm and the 

relation becomes 
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Such that vxuwx /)(Re   is the local Reynolds 

number of the nanofluid in this research. 

 

II. RESULT AND DISCUSSION: 
 Figs. 2 –13 are prepared to explore the 

characteristics of non- dimensional velocity, 

temperature and nanoparticles concentration as 

well as Nusselt number and Sherwood number for 

distinct values of emerging parameters like 

impermeability parameter k1, Dufour diffusivity 

parameter Nd, Radiation parameter Rd, Biot 

number Bi, magnetic parameter M, heat 

generation/absorption parameter λ. Brownian 

motion parameter Nb, Prandtl number Pr, 

thermophoresis parameter Nt, Eckert number Ec, 

Lewis number Le, chemical reaction parameter γ. 

Were as, Table1 and Table2 are constructed in 

order to compare the present results with with the 

previous published results for validation. 

 

Table1: 

Results validation for the Nusselt number (- θ′ (0)) 

when Rd = 0, Pr = 10, k1 = 0, Le = 10, Nd = 0 and 

Nt = 0.1. 

Present results Ghasemi et al. (31) 

0.9528 0.9528 

0.5060 0.5057 

0.2529 0.2527 

0.1200 0.1196 

0.0548 0.0546 

 

Table 2: 

Results validation for the Nusselt number(-φ′ (0)) 

when Rd = 0, Pr = 10, k1 = 0, Le = 10, Nd = 0 and 

Nt = 0.1. 

Present results Ghasemi et al. (31) 

2.1298 2.1295 

2.2749 2.2744 

2.5288 2.5288 

2.7957 2.7955 

3.0354 3.0353 
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 Figure2 analyzed the influence of 

Radiation parameter (Rd) alongside the 

impermeability parameter (k1) on the distribution of 

momentum profile. (a). (k1< 0) and (b). (k1> 0) 

Increment in the radiation parameter increases the 

momentum distribution irrespective of increase or 

decrease in the impermeability parameter. On fig3. 

an effect of radiation parameter is depicted on the 

temperature distribution, in which increase in the 

radiation parameter enhances the temperature 

distribution of the system either with positive or 

negative impermeability parameter. (a). k1 < 0 and 

(b). k1 > 0.  

 
Figure2. effects of radiation parameter (Rd) on 

momentum (a) k1 < 0 (b) k1> 0. 

 

Fig.4 provide highlight on the distribution 

of radiation parameter (Rd) towards dimensionless 

concentration alongside the impermeability of the 

surface, (a). k1 < 0 (b). k1> 0. Increase in the 

radiation parameter increases the concentration of 

the system.    

 Further observations from fig.5 shows the 

simultaneous effects of Magnetic parameter (M) 

and impermeability of the surface over the 

temperature distribution, (a). k1< 0 and (b). k1 > 0. 

In this case, for (a). increase in the values of 

magnetic parameter (M) implies decrease in the 

temperature profile whereas, on the other hand, 

increase in the values of magnetic parameter brings 

about increment in the temperature profile as in the 

case of (b).     

 
Figure3. effects of radiation parameter (Rd) on 

temperature (a) k1 < 0 (b) k1> 0. 

 
Figure4. effects of radiation parameter (Rd) on 

concentration (a) k1 < 0 (b) k1> 0. 

 
Figure5. effects of Magnetic parameter (M) on 

temperature (a) k1 < 0 (b) k1> 0. 

 

 
Figure6. effects of Magnetic parameter (M) on 

concentration (a) k1 < 0 (b) k1> 0. 
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Figure7. effects of radiation parameter (Rd) on 

temperature (a) Nd< 0 (b) Nd > 0. 

  

The variation of the dimensionless 

concentration with dual effects of magnetic 

parameter (M) and impermeability is shown in Fig. 

6 (a). k1< 0 (b). k1> 0, for different values of 

magnetic parameter. In the absence of magnetic 

field, the dimensionless concentration at the surface 

is found to be higher and decreases with increasing 

magnetic field. It is important to note that 

irrespective of either the positivity or negativity of 

the impermeability of the surface, increase in the 

magnetic field intensity increases the concentration 

of the system. Furthermore, the dual effects of 

radiation parameter and Dufour diffusivity on the 

dimensionless temperature for different values of 

radiation parameter are depicted in Fig. 7 (a). Nd< 

0 and (b). Nd> 0. It can be seen that, the 

dimensionless temperature at the surface is higher 

for larger values of radiation parameter in all the 

cases for both (a) and (b). 

 
Figure8. effects of radiation parameter (Rd) on 

concentration (a) Nd< 0 (b) Nd > 0. 

 
Figure9. Effects on Biot number (Bi) on 

temperature 

 

Fig. 8, depicted the variation in 

dimensionless rescaled nanoparticle volume 

fraction with different values of radiation parameter 

along with the Dufour diffusivity (Nd). (a) Nd < 0 

and (b) Nd > 0. In both cases the concentration 

boundary layer thickness increases with increase of 

radiation parameter irrespective of positivity or 

negativity of the Dufour diffusivity. The effects of 

Biot number on the dimensionless temperature is 

shown in Fig. 9. It is clear that the temperature 

profile increases with increasing values of the Biot 

number (Bi). The variation of momentum profile 

with different values of impermeability parameters 

is shown in Fig. 10 for stretching and shrinking 

sheets. It is clear from Fig. 10 that the momentum 

profile is accelerated with the increase in the values 

for impermeability of the surface. On the other 

hand, the influences of heat generation/absorption 

parameter over the Nusselt number is depicted on 

fig.11, in this case, it is observed that with heat 

absorption (λ < 0), increase in the values of the 

parameter decreases the Nusselt number, whereas, 

with heat generation (λ > 0), increase in the values 

of the parameter increases the Nusselt number. The 

variation of Sherwood number with different 

values of heat generation/absorption parameter is 

displayed on fig.12, in which it is clearly visible 

that increase in the heat generation/absorption 

parameter produces an increment in the values of 

Sherwood number. The simultaneous influence of 

radiation parameter as well as the Dufour 

diffusivity parameter on the Nusselt number profile 

is depicted on fig.13, dual increment of the 

parameters produces an increment in the Nusselt 

number profile.   
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Figure10. effects of heat generation/absorption (λ) 

on Momentum 

 
Figure12. effects of heat generation (λ) on 

Sherwood number profile 

 

 
Figure 13. Simultaneous effects of Radiation 

parameter (Rd) and Dofour diffusivity (Nd) on the 

Nusselt number profile. 

 

III. CONCLUSION 
 The dual impacts of Dufour diffusivity 

along with impermeability of the surface towards a 

convective Magnetohydrodynamic (MHD) 

stagnation point flow over a stretching sheet is 

addressed. The ODEs are resolved by employing 

R–K procedure along with Shooting technique. The 

influence of embedded variables on the distribution 

of velocity, temperature, concentration as well as 

Nusselt number and Sherwood number are 

illustrated graphically and tables. The key findings 

are stated below: 

o Temperature is reduced while concentration 

and Nusselt number are increased with larger 

Nd and M. 

o Depreciation is detected for Nusselt number 

and temperature to the enriched values of k1. 

o Strengthening of Biot number causes 

intensification in the temperature of the fluid. 

o Both Nusselt number and Sherwood number 

enlarged with the escalation of heat 

generation/absorption parameter 

o The heat transfer rate declaims for the growth 

in non-linear radiation parameter while reverse 

is the case for Nusselt number, velocity and 

concentration.  
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